Contribution of Linoleic Acid to the Formation of Advanced Glycation End Products in Model Systems during Heat Treatment

نویسندگان

  • Xin Zhao
  • Lu Yue
  • Xincheng Liu
  • Ling Liu
چکیده

Zhao X., Yue L., Liu X., Liu L. (2017): Contribution of linoleic acid to the formation of advanced glycation end products in model systems during heat treatment. Czech J. Food Sci. Advanced glycation end products (AGEs) are glycosylated metabolic products generated in vivo and are associated with aging-related diseases. They are also formed during heat treatment in food processing. In this work, we investigated the contribution of linoleic acid (LA) to AGE formation using a protein/glucose model. An electronic tongue, denaturing polyacrylamide gel electrophoresis, electron spin resonance spectroscopy, circular dichroism, and ultraperformance liquid chromatography-tandem mass spectrometry were used to analyse reaction intermediates and reactive radical formation. The results show that LA is the key factor responsible for the change in flavour including the rapid triggering of glycation reactions. The amount of lipid-induced reactive radicals was significantly higher than in the non-fat system, radical generation in the non-fat system was gradually quenched after a robust radical-yielding reaction in the first 25 minutes. Subsequent unsaturated lipid oxidation, and AGE accumulation surpass Maillard reaction-only outcomes. Initial LA-induced changes in protein structure are followed by glycation and are enhanced by hydrophobic interactions and increased carbonyl levels resulting from lipid oxidation. These findings implicate lipids and lipid oxidation as the main factors responsible for AGE formation during the processing of fat-rich unsaturated fatty acid-containing foods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salvia reuterana Extract Prevents Formation of Advanced Glycation End Products: An In Vitro Study

       In this study, we examined the antioxidant activities of methanolic extract of three endemic species of Salvia from Iran (S. lachno...

متن کامل

Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine.

Maillard or browning reactions lead to formation of advanced glycation end products (AGEs) on protein and contribute to the increase in chemical modification of proteins during aging and in diabetes. AGE inhibitors such as aminoguanidine and pyridoxamine (PM) have proven effective in animal model and clinical studies as inhibitors of AGE formation and development of diabetic complications. We r...

متن کامل

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

ADVANCED GLYCATION END PRODUCTS AND ThiOBARBITURIC ACID REACTIVE SUBSTANCE IN GINGIVAL TISSUES OF DIABETIC AND NON-DIABETIC PATIENTS WITH CHRONIC PERIODONTITIS

 ABSTRACT Background: Production of advanced glycation end products (AGEs) is directly linked to the level and duration of hyperglycemia in diabetic patients. Oxidative stress plays a major role in the pathogenesis of diabetes mellitus. Free radicals are f01med in diabetes by glucose oxidation, nonenzymatic glycation of proteins and subsequent oxidative degradation of glycated proteins. Thiobar...

متن کامل

Assessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats

Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017